√在线天堂中文最新版网,97se亚洲综合色区,国产成人av免费网址,国产成人av在线影院无毒,成人做爰100部片

×

initial weight造句

"initial weight"是什么意思   

例句與造句

  1. Application of k - l transformation the optimization of initial weights of bp neural network
    網(wǎng)絡(luò)初始權(quán)值優(yōu)化中的應(yīng)用
  2. Nntcs employs genetic algorithm ( ga ) in the stage of training to optimize initial weights of ann
    訓(xùn)練過程中結(jié)合遺傳算法,優(yōu)化神經(jīng)網(wǎng)絡(luò)的初始權(quán)值。
  3. Genetic algorithm is used to optimize the initial weight of back propagation network and the operation efficiency is enhanced
    用遺傳算法優(yōu)化bp網(wǎng)絡(luò)的初始權(quán)值,提高神經(jīng)網(wǎng)絡(luò)的運(yùn)算速度。
  4. The initial weights of the neural network can be given according to the material meaning , which expedites the network convergence
    文中將神經(jīng)網(wǎng)絡(luò)與ip控制器結(jié)合,權(quán)的初始值可據(jù)其意義設(shè)定,大大加快了網(wǎng)絡(luò)的收斂速度。
  5. In the control process uses two bp network . one is used as nni recognizing the model , another as neural network control device ( nnc ) . but first off - line recognizes controlled device , make sure nnc initial weights
    在控制的過程中,采用兩個(gè)bp網(wǎng)絡(luò),一個(gè)作為神經(jīng)網(wǎng)絡(luò)辨識器( nni )進(jìn)行辨識建模;另一個(gè)作為神經(jīng)網(wǎng)絡(luò)控制器( nnc ) 。
  6. It's difficult to find initial weight in a sentence. 用initial weight造句挺難的
  7. The algorithms for training weights update and constructing the target vectors are discussed . use the penalty term to improve the astringency of network . and study how choice the appropriate initial weights
    著重研究了根據(jù)輸入和輸出量合理選擇網(wǎng)絡(luò)結(jié)構(gòu),訓(xùn)練權(quán)值的更新算法,目標(biāo)向量的合理構(gòu)造,帶懲罰項(xiàng)的bp網(wǎng)絡(luò),改善了網(wǎng)絡(luò)的收斂性。
  8. The dependences in multitemporal multispectral images by independent component analysis are reduced . in the algorithm , damped factor is imported to reduce the dependence on initial weights , thus the robust of the algorithm is improved
    在改進(jìn)的獨(dú)立成分學(xué)習(xí)算法中,通過在梯度下降方法中引入阻尼因子,降低了對初始值的依賴,提高了獨(dú)立成分求解的穩(wěn)健性。
  9. During the course of develop fault diagnostic method , the influence to the training circle number with network structure 、 learning rate 、 initial weight value & door value etc are discussed . by comprehensive analyses and comparing , the comparatively rational value is adopted to be network ' s eigenvalue
    在制粉系統(tǒng)故障診斷樣本訓(xùn)練過程中,本文作者探討了網(wǎng)絡(luò)結(jié)構(gòu)、學(xué)習(xí)率、初始權(quán)值閾值等因素對訓(xùn)練速度的影響,為選取合理的網(wǎng)絡(luò)參數(shù)提供了依據(jù)。
  10. ( 4 ) research on ann model joined with ga for area rainfall forecast the method is taken to join the genetic algorithm ( ga ) and bp algorithm together and supplementing mutually by optimizing the initial weights of ann with ga , and some application has been made in the binjiang basin for precipitation forecast
    ( 4 )建立了基于遺傳算法的降雨預(yù)報(bào)神經(jīng)網(wǎng)絡(luò)模型利用濱江流域的雨量站和周圍探空站的觀測資料,首次將遺傳算法( ga )應(yīng)用于流域面降雨量預(yù)報(bào)研究。
  11. Sofm neural networks is embedded into evolutionary strategy ( es ) . fitness function is constructed based on the state of sofm neural networks . the sensitivity of sofm neural networks to initial weight matrix and sequence of input exemplars is overcome by the strong global optimum of es
    將sofm網(wǎng)絡(luò)嵌入到進(jìn)化策略( es )中,根據(jù)sofm網(wǎng)絡(luò)的運(yùn)行狀態(tài)構(gòu)造es的適應(yīng)性函數(shù),利用es的強(qiáng)搜索能力,克服sofm網(wǎng)絡(luò)聚類效果受輸入模式次序和網(wǎng)絡(luò)初始連接權(quán)矩陣的影響。
  12. Firstly , influence factors of generalization of neural network are presented in this thesis , in order to improve neural network ’ s generalization ability and dynamic knowledge acquirement adaptive ability , a structure auto - adaptive neural network new model based on genetic algorithm is proposed to optimize structure parameter of nn including hidden layer nodes , training epochs , initial weights , and so on ; secondly , through establishing integrating neural network and introducing data fusion technique , the integrality and precision of acquired knowledge is greatly improved . then aiming at the incompleteness and uncertainty problem consisting in the process of knowledge acquirement , knowledge acquirement method based on rough sets is explored to fulfill the rule extraction for intelligent diagnosis expert system , by completing missing value data and eliminating unnecessary attributes , discretization of continuous attribute , reducing redundancy , extracting rules in this thesis . finally , rough sets theory and neural network are combined to form rnn ( rough neural network ) model for acquiring knowledge , in which rough sets theory is employed to carry out some preprocessing and neural network is acted as one role of dynamic knowledge acquirement , and rnn can improve the speed and quality of knowledge acquirement greatly
    本文首先討論了影響神經(jīng)網(wǎng)絡(luò)的泛化能力的因素,提出了一種新的結(jié)構(gòu)自適應(yīng)神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法,在新方法中,采用了遺傳算法對神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)參數(shù)(隱層節(jié)點(diǎn)數(shù)、訓(xùn)練精度、初始權(quán)值)進(jìn)行優(yōu)化,大大提高了神經(jīng)網(wǎng)絡(luò)的泛化能力和知識動態(tài)獲取自適應(yīng)能力;其次,構(gòu)造集成神經(jīng)網(wǎng)絡(luò),引入數(shù)據(jù)融合算法,實(shí)現(xiàn)了基于集成神經(jīng)網(wǎng)絡(luò)的融合診斷,有效地提高了知識獲取的全面性、完善性及精度;然后,針對知識獲取過程中所存在的不確定性、不完備性等問題,探討了運(yùn)用粗糙集理論的知識獲取方法,通過缺損數(shù)據(jù)補(bǔ)齊、連續(xù)數(shù)據(jù)的離散、沖突消除、冗余信息約簡、知識規(guī)則抽取等一系列的算法實(shí)現(xiàn)了智能診斷的知識規(guī)則獲取;最后,將粗糙集理論與神經(jīng)網(wǎng)絡(luò)相結(jié)合,研究了粗糙集-神經(jīng)網(wǎng)絡(luò)的知識獲取方法。
  13. These are employed for constructing and configuring fuzzy neural network , where the number of neurons of hidden layer of network is equated to the number of rules and the initial weights of network are configured by above factors
    首先利用粗糙集理論對樣本數(shù)據(jù)進(jìn)行初步規(guī)則獲取,并計(jì)算規(guī)則的依賴度和條件覆蓋度,然后根據(jù)這些規(guī)則進(jìn)行網(wǎng)絡(luò)設(shè)計(jì),其中,網(wǎng)絡(luò)隱層節(jié)點(diǎn)的數(shù)目等于規(guī)則的數(shù)目,初始網(wǎng)絡(luò)權(quán)重由規(guī)則的依賴度和條件覆蓋度確定,最后用遺傳算法對模糊神經(jīng)網(wǎng)絡(luò)參數(shù)進(jìn)行優(yōu)化。
  14. The multistage constant modulus ( cm ) array is a cascade adaptive beamforming system that can recover several narrowband co - channel signals without training . the main idea of the smi - cma is to use smi to determine the initial weight for cma operation . the method can come up with the desire signal in despite of the interfering signal is stronger than the desire signal
    基于以上考慮,我們提出了基于smi - cma聯(lián)合自適應(yīng)方法,該算法可以分離多個(gè)同信道信源,由smi算法決定cma算法的初始權(quán)向量,在干擾信號較強(qiáng)時(shí),仍有穩(wěn)定的sinr輸出,具有較快的收斂速度。
  15. 更多例句:  下一頁

相鄰詞匯

  1. "initial volume of distribution"造句
  2. "initial water level"造句
  3. "initial water pressure"造句
  4. "initial wave"造句
  5. "initial wear"造句
  6. "initial word"造句
  7. "initial working capital"造句
  8. "initial workpiece"造句
  9. "initial yaw"造句
  10. "initial yield"造句
桌面版繁體版English日本語

Copyright ? 2025 WordTech Co.